Run 17 FMS diffractive EMjet A_N

Xilin Liang Feb. 1, 2023

Data set

- Data set: run 17 pp transverse $\sqrt{s} = 510$ GeV ,fms stream
 - (pp500_production_2017)
- Production type: MuDst ; Production tag: P22ib
- Triggers for FMS : FMS small board sum, FMS large board sum and FMS-JP.
- Requirement: Event must contain Roman Pot (RP) information (pp2pp).
 - Already filter out events without RP response. Totally 180 fills.

Total number of events from data set sample (with FMS and RP coincidence)	882 M
Total number of events with FMS points	874 M
Total number of events with FMS EM-jets	860 M

Diffractive process channels

2 diffractive channels are considered.

Require:

- Contain only 1 west RP track.
- Either no east side RP track or only 1 east side RP track.
- sum of west side tracks energy (west side proton + EM Jet) less than beam energy

Event selection and corrections

• FMS

- 9 Triggers, veto on FMS-LED
- bit shift, bad / dead / hot channel masking
- Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 2 GeV, p_T > 1 GeV/c, FMS point as input.
- Apply energy correction.
- Only allow acceptable beam polarization (up/down).
- Vertex (Determine vertex z priority according to TPC , VPD, BBC.)
 - Vertex $|z| < 80 \ cm$

Roman Pot and Diffractive process:

- Acceptable cases: (in next slide)
 - 1. Only 1 west RP track + no east RP track
 - 2. Only 1 east RP track + only 1 west RP track
 - RP track must be good track:
 - a) Each track hits 8 planes
 - b) $-0.3 < p_x < 0.5$ [GeV/c] , $0.25 < |p_y| < 0.4$ [GeV/c]
 - Sum of west RP track energy and all EM Jet energy

• BBC ADC sum cuts:

• West Small BBC ADC sum < 600

Corrections:

Energy correction and Underlying Event correction

x _F	E sum Cut
0.1 - 0.15	E _{sum} < 265 GeV
0.15 - 0.2	E _{sum} < 280 GeV
0.2 - 0.25	E _{sum} < 295 GeV
0.25 - 0.3	E _{sum} < 305 GeV
0.3 - 0.35	E _{sum} < 315 GeV
0.35 - 0.4	E _{sum} < 330 GeV
0.4 – 0.45	E _{sum} < 340 GeV

Roman Pot track p_Y vs p_x

- Plot RP track p_Y vs p_x
 - Consider cuts based on p_x and p_y distribution.
 - Plot ratio of good RP track to all RP tracks.
 - Good RP track: $N_{planes} = 8$

Cut on Roman Pot track p_y and p_x

- Plot RP track p_y vs p_x
 - Consider cuts based on p_x and p_y distribution.
 - Plot ratio of good RP track to all RP tracks.
 - Good RP track: $N_{planes} = 8$
- Consider cuts:
 - $-0.3 < p_{\chi} < 0.5$ [GeV/c]
 - $0.25 < |p_y| < 0.4$ [GeV/c]

 $\frac{n_{nplane=8}}{n_{all}}$

Roman Pot track P_v vs P_x (ratio of good tracks to all tracks)

Roman Pot track QA

Roman Pot $\theta_{\rm x}$

 $\times 10^{3}$

7000E

6000

5000F

4000

3000

2000

1000

-15

-10

-5

• After we apply the cuts on N planes that RP track hits and Roman Pot track p_x and p_y , the θ_x and θ_y distribution looks reasonable, matching with ranges of cut for θ_x and θ_y in run 15.

×10⁶

14

12

10

8

4

 $^{0}_{-15}$

-10

-5

15

 θ_{x} [mrad]

10

5

Roman Pot θ_{v}

0

5

Simulation to get energy correction

- About 4 M simulation events
- Particle level simulation (Pythia 6):
 - Pythia 6, Tune Perugia6 (Tune param 370), same as run 15 simulation
 - pp 510 GeV
- Detector level simulation (Geant 3):
 - Library version: SL20a
 - Geometry: y2017
 - Chain option: DbV20220729 y2017 MakeEvent ITTF NoSsdIt NoSvtIt Idst BAna IO Tree logger Sti VFPPVnoCTB beamLine tpcDB TpcHitMover TpxClu fmsDb fmsSim fmspoint tags emcY2 EEfs eess evout -dstout IdTruth geantout big fzin MiniMcMk clearmem
 - Note: chain option is similar as run 15, but DB version is changed to the latest one.

Particle level vs detector level EM-jet energy

- Particle level vs detector level EM-jet energy plot
 - Apply linear function $(p_0 + p_1 \times x)$ to fit for [7,80] GeV
 - p₀: 1.400 ± 0.019
 - p₁: 0.977 ± 0.001

Sum energy and west BBC distribution

- Sum energy: sum of west side RP track energy and all FMS EM-jet energy.
 - Get rid of events without good FMS EM-jet.
 - Note: only consider the 2 accepted channels.
- Only small BBC ADC sum collected in the data sets.

West side small BBC ADC sum cut

- Plot sum energy vs small BBC ADC sum
 - Sum energy: sum of west side RP track energy and all FMS EM-jet energy.
 - Consider $E_{sum} < 260$ GeV as signal and $E_{sum} > 260$ GeV as pile-up
- Plot ratio of signal to pile-up events as function of small BBC ADC sum
 - Apply small BBC ADC sum < 600 as cut.

E sum cuts based on different x_F ranges

• Apply E sum cuts based on signal peak and pile-up peak splitting position.

EM-jets yield counts by each x_{F} and φ

- Run 17 FMS data provides us more events than run 15 FMS data.
 - See EM-jets yield counts for same x_F regions as run 15 FMS analysis (left):
 - x_F: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.45]
 - However, for run 17 data, we can access to A_N for higher x_F (right)
 - x_F: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.35], [0.35, 0.4], [0.4, 0.45]

Run 17 FMS diffractive EM-jet A_N results

- Cross ratio method is applied to extract the A_N .
- Consider only 5 x_F ranges: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.45]

Run 17 FMS diffractive EM-jet A_N results

- Cross ratio method is applied to extract the A_N .
- Consider 7 x_F ranges: [0.1,0.15], [0.15, 0.2], [0.2, 0.25], [0.25, 0.3], [0.3, 0.35], [0.35, 0.4], [0.4, 0.45]
- They still seems to get A_N close to 0.

Conclusion and outlook

- First look at run 17 FMS data sets. They are well generated and good enough for the diffractive EM-jet A_N analysis.
- Follow the similar analysis procedures for run 15 diffractive EM-jet A_N analysis to run 17 diffractive EM-jet A_N .
- The run 17 diffractive EM-jet A_N is close to 0.
- Next to do:
 - Possible separate low photon multiplicity EM-jet A_N .
 - Systematic uncertainty study
 - Compare with run 15 results.
 - Compare with inclusive EM-jet A_N results.

Back up

FMS EM-jet reconstruction

- EM-jet reconstruction: Anti- k_T algorithm with R=0.7 (Same as run 15 FMS analysis)
 - EM-jet: the jet reconstructed using only photons (FMS point).
 - Jet reconstruction: StJetMaker2015 , Anti-kT, R<0.7 , FMS point energy > 2 GeV, $p_T > 1$ GeV/c, FMS point as input.
- Calibration: already applied the final run 17 FMS calibration during generating MuDst files. No additional calibration currently applied (additional hot channel masking)

FMS trigger distribution

- 9 triggers are considered.
- Already filter out events without passing any FMS trigger.

EM-jet QA

• Most of events contain 1 or 2 EM-jets.

EM-jet position QA

- EM-jet position for all the data.
- Determine vertex z priority according to TPC, BBC, VPD. If vertex z is still not determined by these detector, set to 0.

10⁸

 10^{7}

10⁶

 10°

Jet vetrex z

50

100

150

200

Underlying Event correction

- The set up for UE correction is same as EM-jet for run 15.
 - UE ghost area: 0.04
 - Apply UE correction only for EM-jet energy

Roman Pot track QA

• We can get Roman Pot track information in MuDst!

